sábado, 12 de septiembre de 2009

Sexta Diapositiva

.
  

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

jueves, 3 de septiembre de 2009

Corteza Cerebral y Barrera Hematoencefálica

La corteza cerebral
Ocupa el área más grande del cerebro y representa la estructura evolutivamente más reciente y más compleja. También llamada neocorteza, está conformada por una capa de células nerviosas que rodea completamente al resto del cerebro (excluido el cerebelo que tiene su propia corteza) y que diferencia al ser humano de los animales. La corteza cerebral es responsable de la interpretación de la información que llega del mundo exterior y del medio interno, así como de la iniciación de movimientos voluntarios. Los centros del lenguaje y las áreas de percepción de las sensaciones de todas partes del cuerpo se encuentran en la corteza cerebral.
Esta área del cerebro se ha desarrollado de tal manera que, para poder acomodarse en el reducido espacio intracraneal, ha ido plegándose sobre sí misma formando las circunvoluciones. Estos pliegues, a pesar de ser variables entre cerebro y cerebro, tienen ciertos elementos comunes. Por ejemplo, todos tienen una cisura interhemisférica (el canal que divide el cerebro en dos hemisferios y que va de adelante hacia atrás, por la línea media) y todos muestran una cisura (hendidura) central y otra lateral, que divide a cada hemisferio en lóbulos: frontal, parietal, temporal (este último incluye, por dentro, la ínsula) y el occipital.
FIGURAII.7A. La corteza cerebral: anatomía. Aspecto lateral del hemisferio cerebral izquierdo, ilustrando las principales regiones corticales: frontal, parietal, temporal y occipital. La corteza cerebral es la parte más superficial de los hemisferios, representando los últimos 6 a 8 mm de tejido nervioso. En la sección coronal (parte superior de la figura) se puede apreciar el grosor del tejido cortical.


Otra división posible de la corteza cerebral es por sus funciones. Así podemos considerar las áreas de recepción, de salida y de asociación. Por delante de la cisura o surco central se encuentra la circunvolución precentral, donde se localizan los centros responsables del control voluntario y consciente de los movimientos (área de salida). Todas las áreas del organismo desde los pequeños músculos de la cara que permiten expresar emociones, hasta los de la mano del violinista, por mencionar un ejemplo, tienen una representación en esta área de la corteza. Grupos de neuronas se encargan de dirigir estos movimientos en forma precisa y cambiante. En conjunción con la corteza somatosensorial (localizada por atrás del giro central), las neuronas corticales hacen mapas de movimientos y sensaciones que generan los patrones conductuales. Estos mapas varían con la edad y el uso. Así, el área cortical donde se halla representada la mano ocupa una superficie desproporcionada en relación con otras partes del cuerpo (a excepción, quiza de la boca). Su tamaño corresponde a los complejos circuitos neuronales necesarios para efectuar movimientos finos (o para el canto). En la corteza auditiva, los sonidos se descomponen en diferentes frecuencias para ser mejor interpretados, de acuerdo con la experiencia anterior del sujeto. En la corteza visual, las formas, los colores, los movimientos de las imágenes y la memoria de ellos se componen, para informar a las áreas de asociación (las más desarrolladas del ser humano), que integran la información para dar a la conciencia los datos necesarios que le permiten planificar y organizar la ideas (funciones de áreas prefrontales y parietales). Estas funciones son, quiza, las de más reciente aparición evolutiva del reino animal.
Pensemos por un momento lo que hace un pianista al interpretar la música junto con una orquesta: al leer las notas, primero informa a su corteza visual, luego a las áreas auditivas que, a su vez, enviarán señales a la corteza motora para mover alguno de sus dedos. Al mismo tiempo, el músico debe oírse a sí mismo, oír a la orquesta que lo está acompañando y, además, tratar de imprimirle "personalidad" a su música (lo que significa sentirse e interpretarse a sí mismo, utilizando en este caso el lenguaje de la música). Un músico puede realizar más de 10 movimientos por segundo, al tiempo que se oye, que escucha a los demás, y que toma decisiones. Ante tal complejidad, se puede uno imaginar el porqué una droga puede alterar fácilmente estos complejos patrones de actividad.
Las áreas de asociación no reciben información directamente ni la envían a algún músculo o glándula. Son áreas que pueden almacenar recuerdos o control de conductas complejas. Por lo demás, son las áreas corticales que más se han desarrollado en el ser humano.
La barrera hematoencefálica (BHE)
Este término es más bien funcional que anatómico, y se refiere a la filtración selectiva de compuestos que pasan de la sangre al SNC. En otras palabras, no todo lo que llega a la sangre puede pasar hacia el sistema nervioso. La BHE bien podría representar un órgano, con una maduración y funciones específicas, aunque sin una localización, por el momento, definida. En efecto, la barrera hematoencefálica en el feto y en el niño pequeño es mucho más permeable a sustancias provenientes de la sangre que en el adulto. Tanto sustancias como algunos virus pueden atravesar la BHE del feto, y provocar malformaciones congénitas. Y en contraste, cuando deseamos que la BHE deje pasar algún medicamento cuyo sitio de acción es el cerebro, y así ejercer un efecto terapéutico, nos vemos obligados a aumentar la dosis o buscar cómo hacer más permeable la BHE. Tal es el caso de la L-DOPA, útil en la enfermedad de Parkinson, como veremos más adelante



El análisis anatómico de los pequeños vasos sanguíneos cerebrales ha mostrado diferencias importantes con los del resto del organismo. Básicamente están formados por células (endoteliales) unidas por sus paredes en forma muy estrecha. Este endotelio es un órgano en sí, capaz de seleccionar sustancias y secretar hormonas. Otros capilares del cuerpo tienen poros en sus membranas que dejan pasar nutrimentos y otras sustancias. Además, estas células tienen gran cantidad de mitocondrias, organelos celulares que participan en las reacciones energéticas. En otras palabras, si las sustancias no pueden pasar de un lado a otro de la pared celular libremente, entonces debe existir un sistema que las transporte activamente. Por supuesto, estos transportadores o acarreadores necesitan energía para funcionar, y son las mitocondrias las que la proporcionan.
FIGURA II.7B. La corteza cerebral: función. Esta estructura también puede dividirse de acuerdo con la representación funcional. En la porción superior de la figura se ilustra el área de Broca, relacionada con el lenguaje hablado, el área de Wernicke, concerniente a la comprensión del lenguaje, la corteza motora, la sensitiva, la visual y la auditiva. En la porción inferior de la figura se muestra un corte del hemisferio cerebral a dos niveles: la corteza motora (porción derecha) y la sensorial (mitad izquierda), los cuales corresponden a las áreas anterior y posterior de la cisura central. Se ilustran los homúnculos (las representaciones del cuerpo en la corteza cerebral) motor y sensorial, respectivamente.


Además, estas células tienen gran cantidad de mitocondrias, organelos celulares que participan en las reacciones energéticas. En otras palabras, si las sustancias no pueden pasar de un lado a otro de la pared celular libremente, entonces debe existir un sistema que las transporte activamente. Por supuesto, estos transportadores o acarreadores necesitan energía para funcionar, y son las mitocondrias las que la proporcionan.
Lo mismo puede suceder con las drogas. Como veremos, todas las sustancias que son moléculas pequeñas y que se disuelven fácilmente en los lípidos (grasas), atraviesan fácilmente barreras membranales, como la bhe. Y cuando existe una ruptura de la bhe, en caso de lesiones o tumores, las sustancias que se encuentran en la sangre pueden tener mayor acceso al sistema nervioso, con la posibilidad de que aparezcan signos de toxicidad con fármacos utilizados a dosis "terapéuticas".


FIGURA II.8. La barrera hematoencefálica. Es una separación funcional entre el cerebro y el resto del organismo; y uno de los componentes de esta barrera se encuentra en los capilares sanguíneos cerebrales, los cuales son menos permeables, que los del resto del cuerpo, a sustancias que circulan en la sangre. Los pies gliales, extensiones astrocíticas que rodean los vasos capilares, también son parte de la barrera hematoencefálica. A la izquierda se muestra un capilar cerebral y a la derecha un capilar no cerebral. Nótese que la unión entre las células endoteliales de este último muestran aberturas (fenestraciones) que los capilares cerebrales no poseen; éstos, por lo contrario, contienen más mitocondrias, proveedoras de energía de los sistemas de transportación, que acarrean sustancias a uno y a otro lado de la pared capilar.

Sistema Límbico, ganglios basales - Breve reseña

El sistema límbico
Hasta ahora hemos tratado de estructuras anatómicas bien definidas. En el caso del sistema límbico es un sistema funcional, compuesto de diferentes núcleos distribuidos en varias partes de cerebro, bastante antiguo en la escala filogenética, pues se identifica aun en los reptiles (en lo que se denomina rinencéfalo).
El sistema límbico es responsable de la mayoría de los impulsos básicos, de las emociones y los movimientos asociados que son importantes para la sobrevivencia del animal: miedo, furia, sensaciones ligadas al sexo, al placer pero también al dolor y la angustia. En todos los animales, el olfato es un potente activador del sistema límbico.
Los principales componentes del sistema límbico incluyen estructuras corticales (amígdala, hipocampo, cíngulo), el hipotálamo, algunos núcleos talámicos, los cuerpos mamilares y el septo pelúcido, entre otras.
FIGURA II.5. El sistema límbico. Incluye varias estructuras: el hipocampo, la amígdala, el cíngulo, el hipotálamo, y las áreas vecinas con las que se interconectan. Este sistema interviene en la expresión de las emociones y en funciones vinculadas con la memoria.


En casos de epilepsia del lóbulo temporal es relativamente frecuente oír al paciente reportar olores extraños justo antes del inicio de la crisis. Estos síntomas se deben a la invasión, por la actividad neuronal excesiva característica de la epilepsia, de estructuras límbicas, básicamente la amígdala y el hipocampo.
Esta última estructura ofrece, en nuestros días, un interés particular. El hipocampo debe su nombre a su semejanza con un caballito de mar. Se encuentra en la base del lóbulo temporal y se conecta profusamente con otras estructuras corticales. Se ha visto que el hipocampo participa en funciones relacionadas con la memoria reciente (p. ejem., información recién adquirida). Así, en pacientes en los que se ha lesionado el hipocampo para disminuir las crisis epilépticas que no podían controlarse con medicamentos, se han observado deficiencias de esta función. Son pacientes que pueden leer el mismo periódico todos los días, puesto que no recuerdan lo que acaban de leer.










Los ganglios basales
Son centros primarios para el control motor involuntario relacionado, entre otras funciones, con la postura y el tono muscular.
Es un grupo de núcleos localizado en las partes profundas de los hemisferios cerebrales (entre la corteza y el tálamo), que incluyen el núcleo caudado, el putamen, el globo pálido, el núcleo lentiforme, y la sustancia negra, entre otros. Las alteraciones de los ganglios basales dan lugar a patologías del movimiento, como la enfermedad de Parkinson (caracterizada por temblor, rigidez y lentitud de movimientos) o la de Huntington (que se manifiesta por movimientos involuntarios progresivos de tipo danzístico y demencia).
Varios fármacos del grupo de los tranquilizantes mayores (o antipsicóticos), ejercen su acción a este nivel.


FIGURA II.6. Los ganglios basales. Este sistema está constituido por el núcleo caudado, el núcleo lenticular o lentiforme, a su vez formado por el putamen y el globo pálido, la sustancia negra y una pequeña porción del tálamo, el núcleo subtalámico. Además participa en la forma importante en funciones relacionadas con el movimiento.

Tallo cerebral, mesencéfalo y diencéfalo - Breve reseña

El cerebro posterior: tallo cerebral y mesencéfalo
 
El cerebro posterior contiene estructuras que regulan las funciones autónomas, y es donde se origina buena parte del SNA parasimpático. El tallo cerebral, localizado en la parte más alta de la médula espinal, contiene los centros que regulan la respiración, la temperatura y la frecuencia cardiaca. De allí proceden los pares craneales, nervios que intervienen en la deglución, la salivación, los sentidos del gusto y el olfato, los movimientos oculares, faciales, de la cabeza, cuello y los hombros. También por el tallo (o tronco) cerebral pasan los nervios que provienen de las porciones más altas del SNC y que conectan el cerebro con la médula espinal. Los nervios que se originan en la corteza cerebral pasan por el tallo cerebral, se cruzan al lado opuesto (o sea que nuestro hemisferio cerebral derecho controla la mitad izquierda de nuestro organismo y viceversa) y llegan a las motoneuronas espinales para mediar el control voluntario del músculo esquelético.
En la parte más alta del tallo cerebral se encuentra el mesencéfalo o cerebro medio, que sirve de puente entre el tallo cerebral y el cerebro. Además de contener parte de los centros vitales que enumeramos anteriormente (pues éstos se distribuyen a lo largo del cerebro posterior y medio), el mesencéfalo contiene la formación reticular; estructura responsable de los estados de vigilia y sueño. Este sistema participa en fenómenos relacionados con la atención, esto es, cuando se selecciona información, o inversamente, cuando se inhiben señales consideradas irrelevantes (hablaremos acerca de la atención selectiva más adelante).
Esto quiere decir que aquellas sustancias que deprimen la formación reticular (p. ejem., anestésicos generales, hipnóticos) producirán sueño o inconsciencia, mientras que aquellos que la estimulen (como café, anfetaminas) producirán estados de despierto o de agitación.
Las intoxicaciones con drogas depresoras de la formación reticular (p. ejem., barbitúricos) pueden producir estados de coma, en ocasiones fatales.
FIGURA II.3. El tallo cerebral y la formación reticular. Localización del tallo cerebral, región cerebral que constituye la continuación, ya dentro del cráneo, de la médula espinal. Esta región incluye la médula oblongada, el puente y el mesencéfalo; allí se encuentran estructuras relacionadas con funciones primarias como la regulación de la temperatura, de la presión arterial, del sueño y la vigilia, etc. Al microscopio, el seno de esta región aparece como una red de donde proviene la denominada formación reticular.


El diencéfalo (tálamo e hipotálamo)
 
El diencéfalo es el área cerebral situada por arriba del mesencéfalo donde se encuentran estructuras tan importantes como el tálamo y el hipotálamo.
El tálamo consiste de dos masas ovales (una a cada lado de la línea media) encerradas en la parte más profunda de cada hemisferio cerebral. Estas masas son agrupaciones de varios núcleos celulares en los cuales se distribuyen diferentes funciones.
En esta estructura se procesa la información sensorial. Todas las modalidades sensoriales —excepto el olfato, el cual envía señales directamente a las áreas corticales sin pasar por el tálamo—, incluida la visión, audición, gusto y tacto, además del dolor, temperatura y presión, pasan por aquí. Es en el tálamo donde las señales sensoriales se integran y pasan a la corteza cerebral para un análisis ulterior. Es también en el tálamo donde se integran las señales corticales, sensitivas y motoras, que constituyen la conducta.
El hipotálamo, a pesar de su pequeño tamaño (como el de un frijol), regula y controla funciones tan importantes como las de la frecuencia cardiaca, el paso de comida a través del estómago e intestino, además de recibir información de esas áreas. El hipotálamo es también el encargado de regular uno de los más importantes órganos endocrinos: la hipófisis. El hipotálamo elabora sustancias que estimulan o inhiben las células de la hipófisis, para que éstas liberen hormonas, las cuales actúan, al verterse en la sangre, en las glándulas endocrinas de la periferia. El hipotálamo es el órgano que responde primero a cambios corporales para iniciar respuestas hormonales. Reacciones emocionales como el miedo, la ira, el placer o la excitación, estimulan las estructuras hipotalámicas (el hipotálamo está formado, a su vez, por una docena de "núcleos" diferentes, esto es, acúmulos de cuerpos celulares) para producir los cambios fisiológicos ligados a estas emociones, a través del SNA y de la secreción hormonal. El hipotálamo contiene también los centros del hambre y de la sed. Si en animales de experimentación se lesiona el primero de ellos, éstos pueden morir (por falta de hambre) aunque tengan la comida al alcance. La lesión del centro de la saciedad producirá animales extremadamente obesos.
FIGURA II.4. El eje hipotálamo-hipófisis. Vista lateral del tallo cerebral y el mesencéfalo, donde se localiza el tálamo y abajo, el hipotálamo. Éste se relaciona estrechamente con la hipófisis, que regula la secreción de las hormonas de sus dos porciones o lóbulos: la adenohipófisis (o hipófisis anterior) y la neurohipófisis (o hipófisis posterior).


En esta región del cerebro se localiza también un grupo de fibras nerviosas que participa en funciones relacionadas con el placer y la recompensa: el haz del cerebro medio anterior. En ratas a las que se les permite autoestimular esta región por medio de electrodos implantados y conectados a un estimulador y a una palanca, se observa que el animal se fija al pedal para autoestimularse hasta caer exhausto. Las drogas que inducen dependencia y adicción probablemente actúan, al menos en parte, en esta región hipotalámica.
En seres humanos con tumores o focos epilépticos en los que se han insertado electrodos para destruir eléctricamente la lesión se han observado reacciones parecidas. Las posibilidades de encontrar un tratamiento para la depresión endógena mediante sustancias que actúen a este nivel se vuelve una posibilidad terapéutica, así como la de entender el potencial adictivo de ciertas drogas.
El hipotálamo recibe un rico suplemento de sangre, de manera que cuando un fármaco llega a la sangre, esta región puede recibir rápidamente una alta concentración del mismo. En muchas ocasiones, los primeros efectos de una droga se aprecian en el SNA, como respuesta hipotalámica a la droga. Los efectos posteriores aparecen cuando las concentraciones del fármaco alcanzan niveles suficientes en otras áreas del cerebro.
La hipófisis (o pituitaria) y la pineal (o epífisis) son un par de glándulas localizadas en la línea media (o sea que sólo hay una de cada una), que funcionan estrechamente con el hipotálamo. La hipófisis responde a señales provenientes del hipotálamo para producir una serie de hormonas que regulan la actividad de otras glándulas: la hormona estimulante de la tiroides, la hormona adrenocorticotrópica (que estimula la secreción de adrenalina en casos de estrés), la prolactina (relacionada con la producción y secreción de leche), hormonas sexuales como la hormona estimulante del folículo y la luteinizante (que regulan el desarrollo del huevo y de esperma, así como la ovulación). La hipófisis también produce hormonas con efectos más generalizados: la hormona del crecimiento, la hormona estimulante de los melanocitos (las células que producen el pigmento de la piel, ojos y cabello) y la dopamina (neurotransmisor del que hablaremos en detalle más adelante).
La pineal es el sitio donde se produce la melatonina, otra hormona que se relaciona con funciones hipotalámicas y cíclicas. En efecto, esta glándula, considerada por Descartes como el asiento del alma por su localización central y por su forma esférica, muestra niveles elevados de melatonina en la noche y niveles bajos durante el día. Este ritmo circadiano, es decir, cercano a un día, a nivel hormonal se relaciona con el ciclo luz-oscuridad.

Sistema Nervioso Central - Breve reseña

EL SISTEMA NERVIOSO CENTRAL (SNC)
En el embrión, el cerebro se origina a partir de las protuberancias localizadas en la extremidad anterior del tubo neural (estructura proveniente del pliegue de la placa neural, cuyas paredes forman el SNC), visibles alrededor de la cuarta semana de gestación. Estas protuberancias dan lugar, en todos los vertebrados, a las estructuras que forman el cerebro anterior, el cerebro medio (mesencéfalo) y el cerebro posterior (véase la figura II.2). El canal interior del tubo neural del ser humano forma, de abajo hacia arriba (y de atrás hacia adelante en los animales) el canal medular, los ventrículos cerebrales, cuarto y tercero (situados en la línea media) y los ventrículos laterales, uno por cada hemisferio cerebral. Al interior de éstos se forma, circula y elimina el líquido cefalorraquídeo (LCR). Cuando existe algún tipo de bloqueo de la circulación del LCR, en los niños pequeños, se presenta la hidrocefalia.
FIGURA II.2. Las principales subdivisiones del sistema nervioso central. El cerebro o encéfalo puede dividirse en tres porciones: anterior, que incluye los hemisferios cerebrales, media (mesencéfalo), y posterior; esta última comprende también al cerebelo. La médula espinal se divide en regiones: cervical, torácica, lumbar y sacra (como se señalan también en la figura II.I.).

La médula espinal
 
Esta estructura, encerrada dentro del canal espinal formado por las vértebras, está organizada en una región central, compuesta por sustancia gris (cuerpos celulares) y rodeada de sustancia blanca (constituida por fibras nerviosas mielinizadas). La sustancia gris está ordenada por niveles o segmentos de acuerdo con las diferentes partes del cuerpo. Allí se encuentran las neuronas que provocan la contracción de las fibras musculares (motoneuronas). La sustancia blanca contiene los nervios que conectan entre sí los diferentes niveles superiores e inferiores así como las estructuras cerebrales.
El sistema motor incluye a las neuronas motoras (motoneuronas) que se encuentran en las raíces ventrales (en el ser humano, por delante de la porción central de la médula espinal), y que inervan las fibras musculares. Una sola motoneurona puede controlar varias fibras musculares (llamada unidad motora).

martes, 1 de septiembre de 2009

Quinta Diapositiva

Les dejo la quinta presentación, de fecha 04/09/09: